

Abstracts

High T_{sub} c/ Superconductor-Sapphire Microwave Resonator with Extremely High Q-Values Up to 90 K (Dec. 1992 [T-MTT])

Z.-Y. Shen, C. Wilker, P. Pang, W.L. Holstein, D. Face and D.J. Kountz. "High T_{sub} c/ Superconductor-Sapphire Microwave Resonator with Extremely High Q-Values Up to 90 K (Dec. 1992 [T-MTT])." 1992 *Transactions on Microwave Theory and Techniques* 40.12 (Dec. 1992 [T-MTT] (1992 Symposium Issue)): 2424-2432.

A theoretical analysis was performed for an extremely high Q resonator formed by a sapphire rod sandwiched by a pair of high T_{sub} c/ superconductor (HTS) films. A number of these HTS-sapphire-HTS resonators in C-band and Ku-band were designed, fabricated and tested. At 5.552 GHz, Q_{sub} 0/ reached 2×10^{16} at 90 K, 3×10^{16} at 80 K and 1.4×10^{17} at 4.2 K with circulating power up to 500 kW. Formulas for calculating the resonant frequency and Q-value derived from the theoretical analysis were verified by experimental data with good agreement. Three different thin film HTS materials: Ti_{sub} 2/Ba_{sub} 2/CaCu_{sub} 2/O_{sub} 8/, YBa_{sub} 2/Cu_{sub} 3/O_{sub} 7-delta/ and Ti_{sub} 0.5/Pb_{sub} 0.5/Sr_{sub} 2/CaCu_{sub} 2/O_{sub} 7/ were tested. The sensitivity of the high Q-value and the parasitic coupling to the case modes are discussed. Applications, such as frequency stabilized oscillators, filters and characterization for HTS films are described.

[Return to main document.](#)